Arguments of the input script
Host and nodes
- name:
- type:
str
, optional, default:pfd
argument path:name
The workflow name, ‘pfd’ for default
- dflow_config:
- type:
NoneType
|dict
, optional, default:None
argument path:dflow_config
The configuration passed to dflow
- dflow_s3_config:
- type:
NoneType
|dict
, optional, default:None
argument path:dflow_s3_config
The S3 configuration passed to dflow
- default_step_config:
- type:
dict
, optional, default:{}
argument path:default_step_config
The default step configuration.
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:default_step_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:default_step_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:default_step_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:default_step_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:default_step_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:default_step_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:default_step_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:default_step_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:default_step_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:default_step_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:default_step_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:default_step_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:default_step_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:default_step_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
-
The type of the executor.
When type is set to
dispatcher
:
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:parallelism
The parallelism for the workflow. Accept an int that stands for the maximum number of running pods for the workflow. None for default
- bohrium_config:
- type:
NoneType
|dict
, optional, default:None
argument path:bohrium_config
Configurations for the Bohrium platform.
- username:
- type:
str
argument path:bohrium_config/username
The username of the Bohrium platform
- password:
- type:
str
, optionalargument path:bohrium_config/password
The password of the Bohrium platform
- project_id:
- type:
int
argument path:bohrium_config/project_id
The project ID of the Bohrium platform
- ticket:
- type:
str
, optionalargument path:bohrium_config/ticket
- host:
- type:
str
, optional, default:https://workflows.deepmodeling.com
argument path:bohrium_config/host
The host name of the Bohrium platform. Will overwrite dflow_config[‘host’]
- k8s_api_server:
- type:
str
, optional, default:https://workflows.deepmodeling.com
argument path:bohrium_config/k8s_api_server
The k8s server of the Bohrium platform. Will overwrite dflow_config[‘k8s_api_server’]
- repo_key:
- type:
str
, optional, default:oss-bohrium
argument path:bohrium_config/repo_key
The repo key of the Bohrium platform. Will overwrite dflow_s3_config[‘repo_key’]
- storage_client:
- type:
str
, optional, default:dflow.plugins.bohrium.TiefblueClient
argument path:bohrium_config/storage_client
The storage client of the Bohrium platform. Will overwrite dflow_s3_config[‘storage_client’]
- step_configs:
- type:
dict
, optional, default:{}
argument path:step_configs
Configurations for executing dflow steps
- prep_train_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/prep_train_config
Configuration for prepare train
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/prep_train_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/prep_train_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/prep_train_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/prep_train_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/prep_train_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/prep_train_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_train_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/prep_train_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/prep_train_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- run_train_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/run_train_config
Configuration for run train
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/run_train_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/run_train_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/run_train_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/run_train_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/run_train_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/run_train_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_train_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/run_train_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/run_train_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- prep_explore_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/prep_explore_config
Configuration for prepare exploration
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/prep_explore_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/prep_explore_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/prep_explore_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/prep_explore_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/prep_explore_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/prep_explore_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_explore_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/prep_explore_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/prep_explore_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- run_explore_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/run_explore_config
Configuration for run exploration
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/run_explore_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/run_explore_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/run_explore_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/run_explore_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/run_explore_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/run_explore_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_explore_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/run_explore_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/run_explore_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- prep_fp_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/prep_fp_config
Configuration for prepare fp
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/prep_fp_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/prep_fp_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/prep_fp_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/prep_fp_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/prep_fp_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/prep_fp_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/prep_fp_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/prep_fp_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/prep_fp_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- run_fp_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/run_fp_config
Configuration for run fp
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/run_fp_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/run_fp_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/run_fp_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/run_fp_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/run_fp_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/run_fp_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/run_fp_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/run_fp_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/run_fp_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- select_confs_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/select_confs_config
Configuration for the select confs
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/select_confs_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/select_confs_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/select_confs_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/select_confs_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/select_confs_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/select_confs_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/select_confs_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/select_confs_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/select_confs_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- collect_data_config:
- type:
dict
, optional, default:{'template_config': {'image': 'dptechnology/dpgen2:latest', 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:step_configs/collect_data_config
Configuration for the collect data
- template_config:
- type:
dict
, optional, default:{'image': 'dptechnology/dpgen2:latest'}
argument path:step_configs/collect_data_config/template_config
The configs passed to the PythonOPTemplate.
- image:
- type:
str
, optional, default:dptechnology/dpgen2:latest
argument path:step_configs/collect_data_config/template_config/image
The image to run the step.
- timeout:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:
- type:
bool
, optional, default:False
argument path:step_configs/collect_data_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/collect_data_config/template_config/envs
The environmental variables.
- template_slice_config:
- type:
dict
, optionalargument path:step_configs/collect_data_config/template_slice_config
The configs passed to the Slices.
- group_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:
- type:
bool
, optional, default:False
argument path:step_configs/collect_data_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:
- type:
float
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:
- type:
int
|NoneType
, optional, default:None
argument path:step_configs/collect_data_config/parallelism
The parallelism for the step
- executor:
- type:
NoneType
|dict
, optional, default:None
argument path:step_configs/collect_data_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:step_configs/collect_data_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- upload_python_packages:
- type:
str
|NoneType
|typing.List[str]
, optional, default:None
, alias: upload_python_packageargument path:upload_python_packages
Upload python package, for debug purpose
Task definition
- task:
- type:
dict
argument path:task
Task type, finetune or dist
Depending on the value of type, different sub args are accepted.
- type:
When type is set to
finetune
(or its aliasft
):- init_training:
- type:
bool
, optional, default:False
argument path:task[finetune]/init_training
Training before exploration
- skip_aimd:
- type:
bool
, optional, default:True
argument path:task[finetune]/skip_aimd
Skip aimd exploration
- recursive:
- type:
bool
, optional, default:False
argument path:task[finetune]/recursive
Start training from the output model of the last iteration
When type is set to
dist
(or its aliasdistillation
):When type is set to
data_gen
(or its aliasdata generation
):
- inputs:
- type:
dict
argument path:inputs
The input parameter and artifacts for pfd
- type_map:
- type:
typing.List[str]
argument path:inputs/type_map
The type map. e.g. [“Al”, “Mg”]. Element in dpdata format.
- mass_map:
- type:
typing.List[float]
, optionalargument path:inputs/mass_map
The mass map. e.g. [27., 24.]. Al and Mg will be set with mass 27. and 24. amu, respectively.
- init_data_prefix:
- type:
str
|NoneType
, optional, default:None
argument path:inputs/init_data_prefix
The prefix of initial data systems
- init_data_sys:
- type:
str
|NoneType
|typing.List[str]
, optional, default:None
argument path:inputs/init_data_sys
The inital data systems
- init_data_uri:
- type:
str
|NoneType
, optional, default:None
argument path:inputs/init_data_uri
The URI of initial data
- valid_data_prefix:
- type:
str
|NoneType
, optional, default:None
argument path:inputs/valid_data_prefix
The prefix of validation data systems
- valid_data_sys:
- type:
str
|NoneType
|typing.List[str]
, optional, default:None
argument path:inputs/valid_data_sys
The validation data systems
- valid_data_uri:
- type:
str
|NoneType
, optional, default:None
argument path:inputs/valid_data_uri
The URI of validation data
- base_model_path:
- type:
str
|NoneType
|typing.List[str]
, optional, default:None
, aliases: teacher_model_path, pretrain_model_path, teacher_models_pathsargument path:inputs/base_model_path
Path to the base model.In finetune task, this is the path to the pretrained model.In distillation task, this is the path to the teacher model.
- base_model_uri:
- type:
str
|NoneType
, optional, default:None
, aliases: teacher_model_uri, pretrain_model_uriargument path:inputs/base_model_uri
URI of the base model.
- base_model_style:
- type:
str
, optional, default:dp
, alias: teacher_model_styleargument path:inputs/base_model_style
Type of the base model
Structure generation
- conf_generation:
- type:
dict
, alias: configurationsargument path:conf_generation
The inputparameter and artifacts for confs generation
- init_confs:
- type:
dict
, aliases: confs, init_configurationsargument path:conf_generation/init_confs
The initial configurations for PFD workflow
- prefix:
- type:
str
|NoneType
, optional, default:None
argument path:conf_generation/init_confs/prefix
- fmt:
- type:
str
, optional, default:vasp/poscar
argument path:conf_generation/init_confs/fmt
Format of input structure files
- confs_paths:
- type:
str
|typing.List[str]
, optional, alias: filesargument path:conf_generation/init_confs/confs_paths
- confs_uri:
- type:
str
|NoneType
|typing.List[str]
, optional, default:None
argument path:conf_generation/init_confs/confs_uri
- pert_generation:
- type:
typing.List[dict]
|dict
, optional, default:{}
argument path:conf_generation/pert_generation
Structure perturbation settings. A list of multiple perturbation settings can also be supplied if neccesarry.
- conf_idx:
- type:
str
|typing.List[int]
, optional, default:default
argument path:conf_generation/pert_generation/conf_idx
- atom_pert_distance:
- type:
float
, optional, default:0.0
argument path:conf_generation/pert_generation/atom_pert_distance
Perturb distance for atoms, in Angstrom.
- orig:
- type:
bool
, optional, default:False
argument path:conf_generation/pert_generation/orig
Include unperturbed structures.
- cell_pert_fraction:
- type:
float
, optional, default:0.0
argument path:conf_generation/pert_generation/cell_pert_fraction
The amount of lattice contraction or extension, relative to original lattice constant.
- pert_num:
- type:
int
, optional, default:1
argument path:conf_generation/pert_generation/pert_num
Number of perturbed structures
- replicate:
- type:
typing.List[int]
|int
, optional, default:1
argument path:conf_generation/pert_generation/replicate
Generate supercell by lattice replication. Either an integer number or a list of three integers. If an integer is given, the lattice is replicated uniformly in all three directions.
Model training
- train:
- type:
dict
argument path:train
The configuration for training
Depending on the value of type, different sub args are accepted.
- type:
-
the type of the training model
When type is set to
dp
:- config:
- type:
dict
, optional, default:{'command': 'dp', 'impl': 'tensorflow', 'init_model_policy': 'no', 'init_model_old_ratio': 0.9, 'init_model_numb_steps': 400000, 'init_model_start_lr': 0.0001, 'init_model_start_pref_e': 0.1, 'init_model_start_pref_f': 100, 'init_model_start_pref_v': 0.0, 'init_model_with_finetune': False, 'finetune_args': '', 'multitask': False, 'head': None, 'train_args': ''}
argument path:train[dp]/config
Configuration of training
- command:
- type:
str
, optional, default:dp
argument path:train[dp]/config/command
The command for DP, ‘dp’ for default
- impl:
- type:
str
, optional, default:tensorflow
, alias: backendargument path:train[dp]/config/impl
The implementation/backend of DP. It can be ‘tensorflow’ or ‘pytorch’. ‘tensorflow’ for default.
- init_model_policy:
- type:
str
, optional, default:no
argument path:train[dp]/config/init_model_policy
The policy of init-model training. It can be
‘no’: No init-model training. Traing from scratch.
‘yes’: Do init-model training.
‘old_data_larger_than:XXX’: Do init-model if the training data size of the previous model is larger than XXX. XXX is an int number.
- init_model_old_ratio:
- type:
float
, optional, default:0.9
argument path:train[dp]/config/init_model_old_ratio
The frequency ratio of old data over new data
- init_model_numb_steps:
- type:
int
, optional, default:400000
, alias: init_model_stop_batchargument path:train[dp]/config/init_model_numb_steps
The number of training steps when init-model
- init_model_start_lr:
- type:
float
, optional, default:0.0001
argument path:train[dp]/config/init_model_start_lr
The start learning rate when init-model
- init_model_start_pref_e:
- type:
float
, optional, default:0.1
argument path:train[dp]/config/init_model_start_pref_e
The start energy prefactor in loss when init-model
- init_model_start_pref_f:
- type:
float
, optional, default:100
argument path:train[dp]/config/init_model_start_pref_f
The start force prefactor in loss when init-model
- init_model_start_pref_v:
- type:
float
, optional, default:0.0
argument path:train[dp]/config/init_model_start_pref_v
The start virial prefactor in loss when init-model
- init_model_with_finetune:
- type:
bool
, optional, default:False
argument path:train[dp]/config/init_model_with_finetune
Use finetune for init model
- finetune_args:
- type:
str
, optional, default: (empty string)argument path:train[dp]/config/finetune_args
Extra arguments for finetuning
- multitask:
- type:
bool
, optional, default:False
argument path:train[dp]/config/multitask
Do multitask training
- head:
- type:
str
|NoneType
, optional, default:None
argument path:train[dp]/config/head
Head to use in the multitask training
- train_args:
- type:
str
, optional, default: (empty string)argument path:train[dp]/config/train_args
Extra arguments for dp train
- numb_models:
- type:
int
, optional, default:1
argument path:train[dp]/numb_models
Number of models trained for evaluating the model deviation
- template_script:
- type:
str
|dict
|typing.List[str]
, optional, default:{}
argument path:train[dp]/template_script
File names of the template training script. It can be a List[str], the length of which is the same as numb_models. Each template script in the list is used to train a model. Can be a str, the models share the same template training script.
- init_models_paths:
- type:
NoneType
|typing.List[str]
, optional, default:None
, alias: training_iter0_model_pathargument path:train[dp]/init_models_paths
the paths to initial models
- init_models_uri:
- type:
str
|NoneType
, optional, default:None
argument path:train[dp]/init_models_uri
The URI of initial models
- optional_files:
- type:
list
|NoneType
, optional, default:None
argument path:train[dp]/optional_files
Optional files for training
Inference & labeling
- fp:
- type:
dict
, optionalargument path:fp
The configuration for FP
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:fp/type
the type of the fp
When type is set to
vasp
:- inputs_config:
- type:
dict
argument path:fp[vasp]/inputs_config
Configuration for preparing vasp inputs
- incar:
- type:
str
argument path:fp[vasp]/inputs_config/incar
The path to the template incar file
- pp_files:
- type:
dict
argument path:fp[vasp]/inputs_config/pp_files
The pseudopotential files set by a dict, e.g. {“Al” : “path/to/the/al/pp/file”, “Mg” : “path/to/the/mg/pp/file”}
- kspacing:
- type:
float
argument path:fp[vasp]/inputs_config/kspacing
The spacing of k-point sampling. ksapcing will overwrite the incar template
- kgamma:
- type:
bool
, optional, default:True
argument path:fp[vasp]/inputs_config/kgamma
If the k-mesh includes the gamma point. kgamma will overwrite the incar template
- run_config:
- type:
dict
argument path:fp[vasp]/run_config
Configuration for running vasp tasks
- command:
- type:
str
, optional, default:vasp
argument path:fp[vasp]/run_config/command
The command of VASP
- out:
- type:
str
, optional, default:data
argument path:fp[vasp]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:
- type:
str
, optional, default:fp.log
argument path:fp[vasp]/run_config/log
The log file name of VASP
- task_max:
- type:
int
, optional, default:100
argument path:fp[vasp]/task_max
Maximum number of vasp tasks for each iteration
- extra_output_files:
- type:
typing.List
, optional, default:[]
argument path:fp[vasp]/extra_output_files
Extra output file names, support wildcards
When type is set to
gaussian
:- inputs_config:
- type:
dict
argument path:fp[gaussian]/inputs_config
Configuration for preparing vasp inputs
- keywords:
- type:
str
|list
argument path:fp[gaussian]/inputs_config/keywords
Gaussian keywords, e.g. force b3lyp/6-31g**. If a list, run multiple steps.
- multiplicity:
- type:
str
|int
, optional, default:auto
argument path:fp[gaussian]/inputs_config/multiplicity
spin multiplicity state. It can be a number. If auto, multiplicity will be detected automatically, with the following rules:
fragment_guesses=True multiplicity will +1 for each radical, and +2 for each oxygen molecule
fragment_guesses=False multiplicity will be 1 or 2, but +2 for each oxygen molecule.
- charge:
- type:
int
, optional, default:0
argument path:fp[gaussian]/inputs_config/charge
molecule charge. Only used when charge is not provided by the system
- basis_set:
- type:
str
, optionalargument path:fp[gaussian]/inputs_config/basis_set
custom basis set
- keywords_high_multiplicity:
- type:
str
, optionalargument path:fp[gaussian]/inputs_config/keywords_high_multiplicity
keywords for points with multiple raicals. multiplicity should be auto. If not set, fallback to normal keywords
- fragment_guesses:
- type:
bool
, optional, default:False
argument path:fp[gaussian]/inputs_config/fragment_guesses
initial guess generated from fragment guesses. If True, multiplicity should be auto
- nproc:
- type:
int
, optional, default:1
argument path:fp[gaussian]/inputs_config/nproc
Number of CPUs to use
- run_config:
- type:
dict
argument path:fp[gaussian]/run_config
Configuration for running vasp tasks
- command:
- type:
str
, optional, default:g16
argument path:fp[gaussian]/run_config/command
The command of Gaussian
- out:
- type:
str
, optional, default:data
argument path:fp[gaussian]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- post_command:
- type:
str
|NoneType
, optional, default:None
argument path:fp[gaussian]/run_config/post_command
The command after Gaussian
- task_max:
- type:
int
, optional, default:100
argument path:fp[gaussian]/task_max
Maximum number of vasp tasks for each iteration
- extra_output_files:
- type:
typing.List
, optional, default:[]
argument path:fp[gaussian]/extra_output_files
Extra output file names, support wildcards
When type is set to
deepmd
:- inputs_config:
- type:
dict
argument path:fp[deepmd]/inputs_config
Configuration for preparing vasp inputs
- run_config:
- type:
dict
argument path:fp[deepmd]/run_config
Configuration for running vasp tasks
- teacher_model_path:
- type:
str
|BinaryFileInput
argument path:fp[deepmd]/run_config/teacher_model_path
The path of teacher model, which can be loaded by deepmd.infer.DeepPot
- out:
- type:
str
, optional, default:data
argument path:fp[deepmd]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:
- type:
str
, optional, default:fp.log
argument path:fp[deepmd]/run_config/log
The log file name of dp
- task_max:
- type:
int
, optional, default:100
argument path:fp[deepmd]/task_max
Maximum number of vasp tasks for each iteration
- extra_output_files:
- type:
typing.List
, optional, default:[]
argument path:fp[deepmd]/extra_output_files
Extra output file names, support wildcards
When type is set to
fpop_abacus
:- inputs_config:
- type:
dict
argument path:fp[fpop_abacus]/inputs_config
Configuration for preparing vasp inputs
- input_file:
- type:
str
argument path:fp[fpop_abacus]/inputs_config/input_file
A template INPUT file.
- pp_files:
- type:
dict
argument path:fp[fpop_abacus]/inputs_config/pp_files
The pseudopotential files for the elements. For example: {“H”: “/path/to/H.upf”, “O”: “/path/to/O.upf”}.
- element_mass:
- type:
NoneType
|dict
, optional, default:None
argument path:fp[fpop_abacus]/inputs_config/element_mass
Specify the mass of some elements. For example: {“H”: 1.0079, “O”: 15.9994}.
- kpt_file:
- type:
str
|NoneType
, optional, default:None
argument path:fp[fpop_abacus]/inputs_config/kpt_file
The KPT file, by default None.
- orb_files:
- type:
NoneType
|dict
, optional, default:None
argument path:fp[fpop_abacus]/inputs_config/orb_files
The numerical orbital fiels for the elements, by default None. For example: {“H”: “/path/to/H.orb”, “O”: “/path/to/O.orb”}.
- deepks_descriptor:
- type:
str
|NoneType
, optional, default:None
argument path:fp[fpop_abacus]/inputs_config/deepks_descriptor
The deepks descriptor file, by default None.
- deepks_model:
- type:
str
|NoneType
, optional, default:None
argument path:fp[fpop_abacus]/inputs_config/deepks_model
The deepks model file, by default None.
- run_config:
- type:
dict
argument path:fp[fpop_abacus]/run_config
Configuration for running vasp tasks
- command:
- type:
str
, optional, default:abacus
argument path:fp[fpop_abacus]/run_config/command
The command of abacus
- task_max:
- type:
int
, optional, default:100
argument path:fp[fpop_abacus]/task_max
Maximum number of vasp tasks for each iteration
- extra_output_files:
- type:
typing.List
, optional, default:[]
argument path:fp[fpop_abacus]/extra_output_files
Extra output file names, support wildcards
When type is set to
fpop_cp2k
:- inputs_config:
- type:
dict
argument path:fp[fpop_cp2k]/inputs_config
Configuration for preparing vasp inputs
- inp_file:
- type:
str
argument path:fp[fpop_cp2k]/inputs_config/inp_file
The path to the user-submitted CP2K input file.
- run_config:
- type:
dict
argument path:fp[fpop_cp2k]/run_config
Configuration for running vasp tasks
- command:
- type:
str
, optional, default:cp2k
argument path:fp[fpop_cp2k]/run_config/command
The command of cp2k
- task_max:
- type:
int
, optional, default:100
argument path:fp[fpop_cp2k]/task_max
Maximum number of vasp tasks for each iteration
- extra_output_files:
- type:
typing.List
, optional, default:[]
argument path:fp[fpop_cp2k]/extra_output_files
Extra output file names, support wildcards
- aimd:
- type:
dict
, optionalargument path:aimd
The parameter for initial fp calculation
- confs:
- type:
typing.List[int]
|NoneType
, optional, default:None
argument path:aimd/confs
The systems selected for initial fp calculation
- n_sample:
- type:
int
, optional, default:1
argument path:aimd/n_sample
The number of configurations selected for fp calculation within each system
- inference:
- type:
dict
, optional, default:{}
argument path:inference
The parameters for inference settings
- max_force:
- type:
float
|NoneType
, optional, default:None
argument path:inference/max_force
The max value of allowed atomic force
Exploration
- exploration:
- type:
dict
, alias: exploreargument path:exploration
The configuration for exploration
- test_set_config:
- type:
dict
, optional, default:{'test_size': 0.1}
, alias: test_setargument path:exploration/test_set_config
Set the portion of test set. Only available for dist
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration/type
The type of the exploration
lmp
: The exploration by LAMMPS simulationscalypso
: The exploration by CALYPSO structure predictioncalypso:default
: The exploration by CALYPSO structure predictioncalypso:merge
: The exploration by CALYPSO structure prediction
When type is set to
lmp
:The exploration by LAMMPS simulations
- config:
- type:
dict
, optional, default:{'command': 'lmp', 'teacher_model_path': None, 'shuffle_models': False, 'head': None, 'use_ele_temp': 0, 'model_frozen_head': None, 'use_hdf5': False}
argument path:exploration[lmp]/config
Configuration of lmp exploration
- command:
- type:
str
, optional, default:lmp
argument path:exploration[lmp]/config/command
The command of LAMMPS
- teacher_model_path:
- type:
str
|NoneType
|BinaryFileInput
, optional, default:None
argument path:exploration[lmp]/config/teacher_model_path
The teacher model in Knowledge Distillation
- shuffle_models:
- type:
bool
, optional, default:False
argument path:exploration[lmp]/config/shuffle_models
Randomly pick a model from the group of models to drive theexploration MD simulation
- head:
- type:
str
|NoneType
, optional, default:None
argument path:exploration[lmp]/config/head
Select a head from multitask
- use_ele_temp:
- type:
int
, optional, default:0
argument path:exploration[lmp]/config/use_ele_temp
Whether to use electronic temperature, 0 for no, 1 for frame temperature, and 2 for atomic temperature
- model_frozen_head:
- type:
str
|NoneType
, optional, default:None
argument path:exploration[lmp]/config/model_frozen_head
Select a head from multitask
- use_hdf5:
- type:
bool
, optional, default:False
argument path:exploration[lmp]/config/use_hdf5
Use HDF5 to store trajs and model_devis
- max_numb_iter:
- type:
int
, optional, default:10
, alias: max_iterargument path:exploration[lmp]/max_numb_iter
Maximum number of iterations per stage
- fatal_at_max:
- type:
bool
, optional, default:True
argument path:exploration[lmp]/fatal_at_max
Fatal when the number of iteration per stage reaches the max_numb_iter
- output_nopbc:
- type:
bool
, optional, default:False
argument path:exploration[lmp]/output_nopbc
Remove pbc of the output configurations
- convergence:
- type:
dict
, alias: converge_configargument path:exploration[lmp]/convergence
The method of convergence check.
- conf_filter:
- type:
typing.List[dict]
|dict
, optional, default:[]
argument path:exploration[lmp]/convergence/conf_filter
Filtering configurations with too larger or too small prediction error
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[lmp]/convergence/conf_filter/type
possible choices:energy_delta
,force_delta
frame filters based on model test
energy_delta
: allowed prediction error of energy/atom, in eV/atomforce_delta
: allowed prediction error of average atomic forces, in eV/Angstrom
When type is set to
energy_delta
:allowed prediction error of energy/atom, in eV/atom
- thr_l:
- type:
float
, optional, default:0.0
argument path:exploration[lmp]/convergence/conf_filter[energy_delta]/thr_l
The lower threshold of the energy/atom prediction error
- thr_h:
- type:
float
, optional, default:1.0
argument path:exploration[lmp]/convergence/conf_filter[energy_delta]/thr_h
The higher threshold of the energy/atom prediction error
When type is set to
force_delta
:allowed prediction error of average atomic forces, in eV/Angstrom
- thr_l:
- type:
float
, optional, default:0.0
argument path:exploration[lmp]/convergence/conf_filter[force_delta]/thr_l
The lower threshold of the atomic forces prediction error
- thr_h:
- type:
float
, optional, default:0.3
argument path:exploration[lmp]/convergence/conf_filter[force_delta]/thr_h
The higher threshold of the atomic forces prediction error
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[lmp]/convergence/type
the type of the condidate selection and convergence check method.
force_rmse
: Converge by RMSE of atomic forcesforce_rmse_idv
: Converge by RMSE of atomic forcesenergy_rmse
: Converge by RMSE of energy per atom
When type is set to
force_rmse
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[lmp]/convergence[force_rmse]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[lmp]/convergence[force_rmse]/adaptive
When type is set to
force_rmse_idv
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[lmp]/convergence[force_rmse_idv]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[lmp]/convergence[force_rmse_idv]/adaptive
When type is set to
energy_rmse
:Converge by RMSE of energy per atom
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[lmp]/convergence[energy_rmse]/RMSE
- filter:
- type:
typing.List[dict]
|dict
, optional, default:[{'type': 'distance'}]
argument path:exploration[lmp]/filter
Filter configuration for DFT calculation
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[lmp]/filter/type
the type of the frame selector
distance
: The parameters of atom distance filterbox_skewness
: The parameters of box skewness filterbox_length
: The parameters of box length filter
When type is set to
distance
:The parameters of atom distance filter
- custom_safe_dist:
- type:
dict
, optional, default:{}
argument path:exploration[lmp]/filter[distance]/custom_safe_dist
Custom safe distance (in unit of bohr) for each element
- safe_dist_ratio:
- type:
float
, optional, default:1.0
argument path:exploration[lmp]/filter[distance]/safe_dist_ratio
The ratio multiplied to the safe distance
When type is set to
box_skewness
:The parameters of box skewness filter
- theta:
- type:
float
, optional, default:60.0
argument path:exploration[lmp]/filter[box_skewness]/theta
The threshold for angles between the edges of the cell. If all angles are larger than this value the check is passed
When type is set to
box_length
:The parameters of box length filter
- length_ratio:
- type:
float
, optional, default:5.0
argument path:exploration[lmp]/filter[box_length]/length_ratio
The threshold for the length ratio between the edges of the cell. If all length ratios are smaller than this value the check is passed
- stages:
- type:
typing.List[typing.List[dict]]
argument path:exploration[lmp]/stages
The definition of exploration stages of type List[List[ExplorationTaskGroup]. The outer list provides the enumeration of the exploration stages. Then each stage is defined by a list of exploration task groups. Each task group is described in the task group definition
When type is set to
calypso
:The exploration by CALYPSO structure prediction
- config:
- type:
dict
, optional, default:{'command': 'lmp', 'teacher_model_path': None, 'shuffle_models': False, 'head': None, 'use_ele_temp': 0, 'model_frozen_head': None, 'use_hdf5': False}
argument path:exploration[calypso]/config
Configuration of calypso exploration
- model_devi_group_size:
- type:
int
, optionalargument path:exploration[calypso]/config/model_devi_group_size
group size for model deviation.
- run_calypso_command:
- type:
str
, optional, default:calypso.x
argument path:exploration[calypso]/config/run_calypso_command
command of running calypso.
- run_opt_command:
- type:
str
, optionalargument path:exploration[calypso]/config/run_opt_command
command of running optimization with dp.
- max_numb_iter:
- type:
int
, optional, default:5
, alias: max_iterargument path:exploration[calypso]/max_numb_iter
Maximum number of iterations per stage
- fatal_at_max:
- type:
bool
, optional, default:True
argument path:exploration[calypso]/fatal_at_max
Fatal when the number of iteration per stage reaches the max_numb_iter
- output_nopbc:
- type:
bool
, optional, default:False
argument path:exploration[calypso]/output_nopbc
Remove pbc of the output configurations
- convergence:
- type:
dict
argument path:exploration[calypso]/convergence
The method of convergence check.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[calypso]/convergence/type
the type of the condidate selection and convergence check method.
force_rmse
: Converge by RMSE of atomic forcesforce_rmse_idv
: Converge by RMSE of atomic forcesenergy_rmse
: Converge by RMSE of energy per atom
When type is set to
force_rmse
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso]/convergence[force_rmse]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[calypso]/convergence[force_rmse]/adaptive
When type is set to
force_rmse_idv
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso]/convergence[force_rmse_idv]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[calypso]/convergence[force_rmse_idv]/adaptive
When type is set to
energy_rmse
:Converge by RMSE of energy per atom
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso]/convergence[energy_rmse]/RMSE
- stages:
- type:
typing.List[typing.List[dict]]
argument path:exploration[calypso]/stages
The definition of exploration stages of type List[List[ExplorationTaskGroup]. The outer list provides the enumeration of the exploration stages. Then each stage is defined by a list of exploration task groups. Each task group is described in the task group definition
- filters:
- type:
list
|dict
, optional, default:[]
argument path:exploration[calypso]/filters
A list of configuration filters
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[calypso]/filters/type
the type of the frame selector
distance
: The parameters of atom distance filterbox_skewness
: The parameters of box skewness filterbox_length
: The parameters of box length filter
When type is set to
distance
:The parameters of atom distance filter
- custom_safe_dist:
- type:
dict
, optional, default:{}
argument path:exploration[calypso]/filters[distance]/custom_safe_dist
Custom safe distance (in unit of bohr) for each element
- safe_dist_ratio:
- type:
float
, optional, default:1.0
argument path:exploration[calypso]/filters[distance]/safe_dist_ratio
The ratio multiplied to the safe distance
When type is set to
box_skewness
:The parameters of box skewness filter
- theta:
- type:
float
, optional, default:60.0
argument path:exploration[calypso]/filters[box_skewness]/theta
The threshold for angles between the edges of the cell. If all angles are larger than this value the check is passed
When type is set to
box_length
:The parameters of box length filter
- length_ratio:
- type:
float
, optional, default:5.0
argument path:exploration[calypso]/filters[box_length]/length_ratio
The threshold for the length ratio between the edges of the cell. If all length ratios are smaller than this value the check is passed
When type is set to
calypso:default
:The exploration by CALYPSO structure prediction
- config:
- type:
dict
, optional, default:{'command': 'lmp', 'teacher_model_path': None, 'shuffle_models': False, 'head': None, 'use_ele_temp': 0, 'model_frozen_head': None, 'use_hdf5': False}
argument path:exploration[calypso:default]/config
Configuration of calypso exploration
- model_devi_group_size:
- type:
int
, optionalargument path:exploration[calypso:default]/config/model_devi_group_size
group size for model deviation.
- run_calypso_command:
- type:
str
, optional, default:calypso.x
argument path:exploration[calypso:default]/config/run_calypso_command
command of running calypso.
- run_opt_command:
- type:
str
, optionalargument path:exploration[calypso:default]/config/run_opt_command
command of running optimization with dp.
- max_numb_iter:
- type:
int
, optional, default:5
, alias: max_iterargument path:exploration[calypso:default]/max_numb_iter
Maximum number of iterations per stage
- fatal_at_max:
- type:
bool
, optional, default:True
argument path:exploration[calypso:default]/fatal_at_max
Fatal when the number of iteration per stage reaches the max_numb_iter
- output_nopbc:
- type:
bool
, optional, default:False
argument path:exploration[calypso:default]/output_nopbc
Remove pbc of the output configurations
- convergence:
- type:
dict
argument path:exploration[calypso:default]/convergence
The method of convergence check.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[calypso:default]/convergence/type
the type of the condidate selection and convergence check method.
force_rmse
: Converge by RMSE of atomic forcesforce_rmse_idv
: Converge by RMSE of atomic forcesenergy_rmse
: Converge by RMSE of energy per atom
When type is set to
force_rmse
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso:default]/convergence[force_rmse]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[calypso:default]/convergence[force_rmse]/adaptive
When type is set to
force_rmse_idv
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso:default]/convergence[force_rmse_idv]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[calypso:default]/convergence[force_rmse_idv]/adaptive
When type is set to
energy_rmse
:Converge by RMSE of energy per atom
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso:default]/convergence[energy_rmse]/RMSE
- stages:
- type:
typing.List[typing.List[dict]]
argument path:exploration[calypso:default]/stages
The definition of exploration stages of type List[List[ExplorationTaskGroup]. The outer list provides the enumeration of the exploration stages. Then each stage is defined by a list of exploration task groups. Each task group is described in the task group definition
- filters:
- type:
list
|dict
, optional, default:[]
argument path:exploration[calypso:default]/filters
A list of configuration filters
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[calypso:default]/filters/type
the type of the frame selector
distance
: The parameters of atom distance filterbox_skewness
: The parameters of box skewness filterbox_length
: The parameters of box length filter
When type is set to
distance
:The parameters of atom distance filter
- custom_safe_dist:
- type:
dict
, optional, default:{}
argument path:exploration[calypso:default]/filters[distance]/custom_safe_dist
Custom safe distance (in unit of bohr) for each element
- safe_dist_ratio:
- type:
float
, optional, default:1.0
argument path:exploration[calypso:default]/filters[distance]/safe_dist_ratio
The ratio multiplied to the safe distance
When type is set to
box_skewness
:The parameters of box skewness filter
- theta:
- type:
float
, optional, default:60.0
argument path:exploration[calypso:default]/filters[box_skewness]/theta
The threshold for angles between the edges of the cell. If all angles are larger than this value the check is passed
When type is set to
box_length
:The parameters of box length filter
- length_ratio:
- type:
float
, optional, default:5.0
argument path:exploration[calypso:default]/filters[box_length]/length_ratio
The threshold for the length ratio between the edges of the cell. If all length ratios are smaller than this value the check is passed
When type is set to
calypso:merge
:The exploration by CALYPSO structure prediction
- config:
- type:
dict
, optional, default:{'command': 'lmp', 'teacher_model_path': None, 'shuffle_models': False, 'head': None, 'use_ele_temp': 0, 'model_frozen_head': None, 'use_hdf5': False}
argument path:exploration[calypso:merge]/config
Configuration of calypso exploration
- model_devi_group_size:
- type:
int
, optionalargument path:exploration[calypso:merge]/config/model_devi_group_size
group size for model deviation.
- run_calypso_command:
- type:
str
, optional, default:calypso.x
argument path:exploration[calypso:merge]/config/run_calypso_command
command of running calypso.
- run_opt_command:
- type:
str
, optionalargument path:exploration[calypso:merge]/config/run_opt_command
command of running optimization with dp.
- max_numb_iter:
- type:
int
, optional, default:5
, alias: max_iterargument path:exploration[calypso:merge]/max_numb_iter
Maximum number of iterations per stage
- fatal_at_max:
- type:
bool
, optional, default:True
argument path:exploration[calypso:merge]/fatal_at_max
Fatal when the number of iteration per stage reaches the max_numb_iter
- output_nopbc:
- type:
bool
, optional, default:False
argument path:exploration[calypso:merge]/output_nopbc
Remove pbc of the output configurations
- convergence:
- type:
dict
argument path:exploration[calypso:merge]/convergence
The method of convergence check.
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[calypso:merge]/convergence/type
the type of the condidate selection and convergence check method.
force_rmse
: Converge by RMSE of atomic forcesforce_rmse_idv
: Converge by RMSE of atomic forcesenergy_rmse
: Converge by RMSE of energy per atom
When type is set to
force_rmse
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso:merge]/convergence[force_rmse]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[calypso:merge]/convergence[force_rmse]/adaptive
When type is set to
force_rmse_idv
:Converge by RMSE of atomic forces
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso:merge]/convergence[force_rmse_idv]/RMSE
- adaptive:
- type:
NoneType
|dict
, optional, default:None
argument path:exploration[calypso:merge]/convergence[force_rmse_idv]/adaptive
When type is set to
energy_rmse
:Converge by RMSE of energy per atom
- RMSE:
- type:
float
, optional, default:0.01
argument path:exploration[calypso:merge]/convergence[energy_rmse]/RMSE
- stages:
- type:
typing.List[typing.List[dict]]
argument path:exploration[calypso:merge]/stages
The definition of exploration stages of type List[List[ExplorationTaskGroup]. The outer list provides the enumeration of the exploration stages. Then each stage is defined by a list of exploration task groups. Each task group is described in the task group definition
- filters:
- type:
list
|dict
, optional, default:[]
argument path:exploration[calypso:merge]/filters
A list of configuration filters
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:exploration[calypso:merge]/filters/type
the type of the frame selector
distance
: The parameters of atom distance filterbox_skewness
: The parameters of box skewness filterbox_length
: The parameters of box length filter
When type is set to
distance
:The parameters of atom distance filter
- custom_safe_dist:
- type:
dict
, optional, default:{}
argument path:exploration[calypso:merge]/filters[distance]/custom_safe_dist
Custom safe distance (in unit of bohr) for each element
- safe_dist_ratio:
- type:
float
, optional, default:1.0
argument path:exploration[calypso:merge]/filters[distance]/safe_dist_ratio
The ratio multiplied to the safe distance
When type is set to
box_skewness
:The parameters of box skewness filter
- theta:
- type:
float
, optional, default:60.0
argument path:exploration[calypso:merge]/filters[box_skewness]/theta
The threshold for angles between the edges of the cell. If all angles are larger than this value the check is passed
When type is set to
box_length
:The parameters of box length filter
- length_ratio:
- type:
float
, optional, default:5.0
argument path:exploration[calypso:merge]/filters[box_length]/length_ratio
The threshold for the length ratio between the edges of the cell. If all length ratios are smaller than this value the check is passed
Explore task group definition
LAMMPS task group
- task_group:
- type:
dict
argument path:task_group
Depending on the value of type, different sub args are accepted.
- type:
- type:
str
(flag key)argument path:task_group/type
the type of the task group
lmp-md
: Lammps MD tasks. DPGEN will generate the lammps input scriptlmp-template
: Lammps MD tasks defined by templates. User provide lammps (and plumed) template for lammps tasks. The variables in templates are revised by the revisions key. Notice that the lines for pair style, dump and plumed are reserved for the revision of dpgen2, and the users should not write these lines by themselves. Rather, users notify dpgen2 the poistion of the line for pair_style by writting ‘pair_style deepmd’, the line for dump by writting ‘dump dpgen_dump’. If plumed is used, the line for fix plumed shouldbe written exactly as ‘fix dpgen_plm’.customized-lmp-template
: Lammps MD tasks defined by user customized shell commands and templates. User provided shell script generates a series of folders, and each folder contains a lammps template task group.
When type is set to
lmp-md
(or its aliaslmp-npt
):Lammps MD tasks. DPGEN will generate the lammps input script
- conf_idx:
- type:
list
, alias: sys_idxargument path:task_group[lmp-md]/conf_idx
The configurations of configurations[conf_idx] will be used to generate the initial configurations of the tasks. This key provides the index of selected item in the configurations array.
- n_sample:
- type:
int
|NoneType
, optional, default:None
argument path:task_group[lmp-md]/n_sample
Number of configurations. If this number is smaller than the number of configruations in configruations[conf_idx], then n_sample configruations are randomly sampled from configruations[conf_idx], otherwise all configruations in configruations[conf_idx] will be used. If not provided, all configruations in configruations[conf_idx] will be used.
- temps:
- type:
list
, alias: Tsargument path:task_group[lmp-md]/temps
A list of temperatures in K. Also used to initialize the temperature
- press:
- type:
list
, optional, alias: Psargument path:task_group[lmp-md]/press
A list of pressures in bar.
- ens:
- type:
str
, optional, default:nve
, alias: ensembleargument path:task_group[lmp-md]/ens
The ensemble. Allowd options are ‘nve’, ‘nvt’, ‘npt’, ‘npt-a’, ‘npt-t’. ‘npt-a’ stands for anisotrpic box sampling and ‘npt-t’ stands for triclinic box sampling.
- dt:
- type:
float
, optional, default:0.001
argument path:task_group[lmp-md]/dt
The time step
- nsteps:
- type:
int
, optional, default:100
argument path:task_group[lmp-md]/nsteps
The number of steps
- trj_freq:
- type:
int
, optional, default:10
, aliases: t_freq, trj_freq, traj_freqargument path:task_group[lmp-md]/trj_freq
The number of steps
- tau_t:
- type:
float
, optional, default:0.05
argument path:task_group[lmp-md]/tau_t
The time scale of thermostat
- tau_p:
- type:
float
, optional, default:0.5
argument path:task_group[lmp-md]/tau_p
The time scale of barostat
- pka_e:
- type:
float
|NoneType
, optional, default:None
argument path:task_group[lmp-md]/pka_e
The energy of primary knock-on atom
- neidelay:
- type:
int
|NoneType
, optional, default:None
argument path:task_group[lmp-md]/neidelay
The delay of updating the neighbor list
- no_pbc:
- type:
bool
, optional, default:False
argument path:task_group[lmp-md]/no_pbc
Not using the periodic boundary condition
- use_clusters:
- type:
bool
, optional, default:False
argument path:task_group[lmp-md]/use_clusters
Calculate atomic model deviation
- relative_f_epsilon:
- type:
float
|NoneType
, optional, default:None
argument path:task_group[lmp-md]/relative_f_epsilon
Calculate relative force model deviation
- relative_v_epsilon:
- type:
float
|NoneType
, optional, default:None
argument path:task_group[lmp-md]/relative_v_epsilon
Calculate relative virial model deviation
When type is set to
lmp-template
:Lammps MD tasks defined by templates. User provide lammps (and plumed) template for lammps tasks. The variables in templates are revised by the revisions key. Notice that the lines for pair style, dump and plumed are reserved for the revision of dpgen2, and the users should not write these lines by themselves. Rather, users notify dpgen2 the poistion of the line for pair_style by writting ‘pair_style deepmd’, the line for dump by writting ‘dump dpgen_dump’. If plumed is used, the line for fix plumed shouldbe written exactly as ‘fix dpgen_plm’.
- conf_idx:
- type:
list
, alias: sys_idxargument path:task_group[lmp-template]/conf_idx
The configurations of configurations[conf_idx] will be used to generate the initial configurations of the tasks. This key provides the index of selected item in the configurations array.
- n_sample:
- type:
int
|NoneType
, optional, default:None
argument path:task_group[lmp-template]/n_sample
Number of configurations. If this number is smaller than the number of configruations in configruations[conf_idx], then n_sample configruations are randomly sampled from configruations[conf_idx], otherwise all configruations in configruations[conf_idx] will be used. If not provided, all configruations in configruations[conf_idx] will be used.
- lmp_template_fname:
- type:
str
, aliases: lmp_template, lmpargument path:task_group[lmp-template]/lmp_template_fname
The file name of lammps input template
- plm_template_fname:
- type:
str
|NoneType
, optional, default:None
, aliases: plm_template, plmargument path:task_group[lmp-template]/plm_template_fname
The file name of plumed input template
- revisions:
- type:
dict
, optional, default:{}
argument path:task_group[lmp-template]/revisions
- traj_freq:
- type:
int
, optional, default:10
, aliases: t_freq, trj_freq, trj_freqargument path:task_group[lmp-template]/traj_freq
The frequency of dumping configurations and thermodynamic states
When type is set to
customized-lmp-template
:Lammps MD tasks defined by user customized shell commands and templates. User provided shell script generates a series of folders, and each folder contains a lammps template task group.
- conf_idx:
- type:
list
, alias: sys_idxargument path:task_group[customized-lmp-template]/conf_idx
The configurations of configurations[conf_idx] will be used to generate the initial configurations of the tasks. This key provides the index of selected item in the configurations array.
- n_sample:
- type:
int
|NoneType
, optional, default:None
argument path:task_group[customized-lmp-template]/n_sample
Number of configurations. If this number is smaller than the number of configruations in configruations[conf_idx], then n_sample configruations are randomly sampled from configruations[conf_idx], otherwise all configruations in configruations[conf_idx] will be used. If not provided, all configruations in configruations[conf_idx] will be used.
- custom_shell_commands:
- type:
list
argument path:task_group[customized-lmp-template]/custom_shell_commands
Customized shell commands to be run for each configuration. The commands require input_lmp_conf_name as input conf file, input_lmp_tmpl_name and input_plm_tmpl_name as templates, and input_extra_files as extra input files. By running the commands a series folders in pattern output_dir_pattern are supposed to be generated, and each folder is supposed to contain a configuration file output_lmp_conf_name, a lammps template file output_lmp_tmpl_name and a plumed template file output_plm_tmpl_name.
- revisions:
- type:
dict
, optional, default:{}
argument path:task_group[customized-lmp-template]/revisions
The revisions. Should be a dict providing the key - list of desired values pair. Key is the word to be replaced in the templates, and it may appear in both the lammps and plumed input templates. All values in the value list will be enmerated.
- traj_freq:
- type:
int
, optional, default:10
, aliases: t_freq, trj_freq, trj_freqargument path:task_group[customized-lmp-template]/traj_freq
The frequency of dumping configurations and thermodynamic states
- input_lmp_conf_name:
- type:
str
, optional, default:conf.lmp
argument path:task_group[customized-lmp-template]/input_lmp_conf_name
Input conf file name for the shell commands.
- input_lmp_tmpl_name:
- type:
str
, optional, default:in.lammps
, aliases: lmp_template, lmpargument path:task_group[customized-lmp-template]/input_lmp_tmpl_name
The file name of lammps input template
- input_plm_tmpl_name:
- type:
str
|NoneType
, optional, default:None
, aliases: plm_template, plmargument path:task_group[customized-lmp-template]/input_plm_tmpl_name
The file name of plumed input template
- input_extra_files:
- type:
list
, optional, default:[]
argument path:task_group[customized-lmp-template]/input_extra_files
Extra files that may be needed to execute the shell commands
- output_dir_pattern:
- type:
str
|list
, optional, default:*
argument path:task_group[customized-lmp-template]/output_dir_pattern
Pattern of resultant folders generated by the shell commands.
- output_lmp_conf_name:
- type:
str
, optional, default:conf.lmp
argument path:task_group[customized-lmp-template]/output_lmp_conf_name
Generated conf file name.
- output_lmp_tmpl_name:
- type:
str
, optional, default:in.lammps
argument path:task_group[customized-lmp-template]/output_lmp_tmpl_name
Generated lmp input file name.
- output_plm_tmpl_name:
- type:
str
, optional, default:input.plumed
argument path:task_group[customized-lmp-template]/output_plm_tmpl_name
Generated plm input file name.